A network of trans-cortical capillaries as mainstay for blood circulation in long bones
Closed circulatory systems underlie the function of vertebrate organs, but in long bones their structure is unclear although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil migration from BM, we studied the vascular system of murine long bones. Here, in a mou...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2019-02, Vol.1 (2), p.236-250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Closed circulatory systems underlie the function of vertebrate organs, but in long bones their structure is unclear although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil migration from BM, we studied the vascular system of murine long bones. Here, in a mouse model, we show that hundreds of capillaries originate in BM, traverse cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% of arterial and 59% of venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the closed circulatory system in long bones and may represent an important route for immune cell export from BM.
Bone marrow-derived cells can rapidly enter the systemic circulation, but how this is achieved is unclear. Grüneboom et al. identify tiny capillaries, termed trans-cortical vessels (TCVs), that connect the bone marrow cavity to the systemic vasculature, and show that the majority of blood in long bones passes through TCVs. |
---|---|
ISSN: | 2522-5812 2522-5812 |
DOI: | 10.1038/s42255-018-0016-5 |