Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

Accumulating evidence suggests that inflammation plays a major role in the pathogenesis of motor neuron death in amyotrophic lateral sclerosis (ALS). Important mediators of inflammation such as the cytokine tumor necrosis factor-alpha (TNF-alpha) and its superfamily member fibroblast-associated cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2006-03, Vol.26 (9), p.2467-2473
Hauptverfasser: Kiaei, Mahmoud, Petri, Susanne, Kipiani, Khatuna, Gardian, Gabrielle, Choi, Dong-Kug, Chen, Junyu, Calingasan, Noel Y, Schafer, Peter, Muller, George W, Stewart, Charles, Hensley, Kenneth, Beal, M. Flint
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulating evidence suggests that inflammation plays a major role in the pathogenesis of motor neuron death in amyotrophic lateral sclerosis (ALS). Important mediators of inflammation such as the cytokine tumor necrosis factor-alpha (TNF-alpha) and its superfamily member fibroblast-associated cell-surface ligand (FasL) have been implicated in apoptosis. We found increased TNF-alpha and FasL immunoreactivity in lumbar spinal cord sections of ALS patients and G93A transgenic mice. Both increased TNF-alpha and FasL immunostaining in the lumbar spinal cord of the G93A SOD1 transgenic mice occurred at 40-60 d, well before the onset of symptoms and loss of motor neurons. We tested the neuroprotective effect of thalidomide and its analog lenalidomide, pharmacological agents that inhibit the expression of TNF-alpha and other cytokines by destabilizing their mRNA. Treatment with either thalidomide or lenalidomide attenuated weight loss, enhanced motor performance, decreased motor neuron cell death, and significantly increased the life span in G93A transgenic mice. Treated G93A mice showed a reduction in TNF-alpha and FasL immunoreactivity as well as their mRNA in the lumbar spinal cord. Both compounds also reduced interleukin (IL)-12p40, IL-1alpha, and IL-1beta and increased IL-RA and TGF-beta1 mRNA. Therefore, both thalidomide and lenalidomide bear promise as therapeutic interventions for the treatment of ALS.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.5253-05.2006