Amphiphysin I Antisense Oligonucleotides Inhibit Neurite Outgrowth in Cultured Hippocampal Neurons

Amphiphysin I is an SH3 domain-containing neuronal protein, enriched in axon terminals, which was reported to act as a physiological binding partner for dynamin I in synaptic vesicle endocytosis. Rvs167 and Rvs161, the yeast homologs of amphiphysin I, have been implicated in endocytosis, actin funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1998-01, Vol.18 (1), p.93-103
Hauptverfasser: Mundigl, Olaf, Ochoa, Gian-Carlo, David, Carol, Slepnev, Vladimir I, Kabanov, Alexander, De Camilli, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amphiphysin I is an SH3 domain-containing neuronal protein, enriched in axon terminals, which was reported to act as a physiological binding partner for dynamin I in synaptic vesicle endocytosis. Rvs167 and Rvs161, the yeast homologs of amphiphysin I, have been implicated in endocytosis, actin function, and cell polarity. Now we have explored the possibility that amphiphysin I also may have a role in actin dynamics and cell polarity by testing the effect of amphiphysin I suppression on neurite outgrowth. Freshly plated hippocampal neurons were exposed to antisense oligonucleotides via a new delivery system based on a polycationic amphipathic polymer, PS980. Western blot analysis revealed that amphiphysin I levels steadily increased with neuronal differentiation, whereas in antisense-treated cultures amphiphysin I levels were reduced to approximately 10% of control levels at 48 hr. Concomitantly, a collapse of growth cones and a severe inhibition of neurite outgrowth and axon formation were observed. A similar effect was observed previously after dynamin I suppression in the same culture system (). We also have found that amphiphysin I and dynamin I colocalize in developing neurons at all developmental stages and that a pool of both proteins is colocalized with actin patches at the leading edge of growth cones. Our findings suggest a conserved role of the amphiphysin protein family in the dynamics of the cortical cell cytoskeleton and provide new evidence for a close functional link between amphiphysin I and dynamin I.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.18-01-00093.1998