Effects of Pedunculopontine Tegmental Nucleus Lesions on Responding for Intravenous Heroin under Different Schedules of Reinforcement

The pedunculopontine tegmental nucleus (PPTg) is believed to play important roles in reward and learning. We examined the effect of PPTg lesions (0.5 microl of 0.1 M NMDA injected bilaterally over 10 min) on the learning of an operant response for opiate reward. In 14 adult male Long-Evans rats, bil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1998-07, Vol.18 (13), p.5035-5044
Hauptverfasser: Olmstead, Mary C, Munn, Elizabeth M, Franklin, Keith B. J, Wise, Roy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pedunculopontine tegmental nucleus (PPTg) is believed to play important roles in reward and learning. We examined the effect of PPTg lesions (0.5 microl of 0.1 M NMDA injected bilaterally over 10 min) on the learning of an operant response for opiate reward. In 14 adult male Long-Evans rats, bilateral lesions of the PPTg disrupted the acquisition of responding for intravenous heroin (0.1 mg/kg infused at a rate of 0.25 ml/28 sec) on a fixed ratio-1 (FR-1) schedule of reinforcement. The 12 remaining lesioned animals increased their heroin intake over the acquisition sessions but did not reach the response levels of sham-lesioned animals on the 15th and final session. The sham- and PPTg-lesioned animals that learned the FR-1 task exhibited similar patterns of responding during extinction and reacquisition sessions. When tested on a progressive ratio (PR) schedule of reinforcement, however, PPTg-lesioned animals had lower break points than sham-lesioned animals. Asymmetric lesions, which destroyed the majority of the nucleus in one hemisphere only, did not produce any behavioral deficits. Rats that were lesioned after training also did not show deficits in responding under either FR or PR schedules. These findings suggest that PPTg lesions reduce the rewarding effect of opiates but do not disrupt the ability either to learn an operant response or the response requirements of a PR schedule.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.18-13-05035.1998