GToTree: a user-friendly workflow for phylogenomics
Abstract Summary Genome-level evolutionary inference (i.e. phylogenomics) is becoming an increasingly essential step in many biologists’ work. Accordingly, there are several tools available for the major steps in a phylogenomics workflow. But for the biologist whose main focus is not bioinformatics,...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-10, Vol.35 (20), p.4162-4164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Summary
Genome-level evolutionary inference (i.e. phylogenomics) is becoming an increasingly essential step in many biologists’ work. Accordingly, there are several tools available for the major steps in a phylogenomics workflow. But for the biologist whose main focus is not bioinformatics, much of the computational work required—such as accessing genomic data on large scales, integrating genomes from different file formats, performing required filtering, stitching different tools together etc.—can be prohibitive. Here I introduce GToTree, a command-line tool that can take any combination of fasta files, GenBank files and/or NCBI assembly accessions as input and outputs an alignment file, estimates of genome completeness and redundancy, and a phylogenomic tree based on a specified single-copy gene (SCG) set. Although GToTree can work with any custom hidden Markov Models (HMMs), also included are 13 newly generated SCG-set HMMs for different lineages and levels of resolution, built based on searches of ∼12 000 bacterial and archaeal high-quality genomes. GToTree aims to give more researchers the capability to make phylogenomic trees.
Availability and implementation
GToTree is open-source and freely available for download from: github.com/AstrobioMike/GToTree. It is implemented primarily in bash with helper scripts written in python.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btz188 |