Role of Primate Superior Colliculus in Preparation and Execution of Anti-Saccades and Pro-Saccades

We investigated how the brain switches between the preparation of a movement where a stimulus is the target of the movement, and a movement where a stimulus serves as a landmark for an instructed movement elsewhere. Monkeys were trained on a pro-/anti-saccade paradigm in which they either had to gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1999-04, Vol.19 (7), p.2740-2754
Hauptverfasser: Everling, Stefan, Dorris, Michael C, Klein, Raymond M, Munoz, Douglas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated how the brain switches between the preparation of a movement where a stimulus is the target of the movement, and a movement where a stimulus serves as a landmark for an instructed movement elsewhere. Monkeys were trained on a pro-/anti-saccade paradigm in which they either had to generate a pro-saccade toward a visual stimulus or an anti-saccade away from the stimulus to its mirror position, depending on the color of an initial fixation point. Neural activity was recorded in the superior colliculus (SC), a structure that is known to be involved in the generation of fast saccades, to determine whether it was also involved in the generation of anti-saccades. On anti-saccade trials, fixation during the instruction period was associated with an increased activity of collicular fixation-related neurons and a decreased activity of saccade-related neurons. Stimulus-related and saccade-related activity was reduced on anti-saccade trials. Our results demonstrate that the anti-saccade task involves (and may require) the attenuation of preparatory and stimulus-related activity in the SC to avoid unwanted pro-saccades. Because the attenuated pre-saccade activity that we found in the SC may be insufficient by itself to elicit correct anti-saccades, additional movement signals from other brain areas are presumably required.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.19-07-02740.1999