Promoter Transgenics Reveal Multiple Gonadotropin-Releasing Hormone-I-Expressing Cell Populations of Different Embryological Origin in Mouse Brain

Gonadotropin-releasing hormone-I (GnRH-I) is thought to be expressed by a single, highly spatially restricted group of neurons, which originate in the olfactory placode and migrate through the nose into the medial septum and hypothalamus from where they control fertility. Transgenic mice bearing a 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1999-07, Vol.19 (14), p.5955-5966
Hauptverfasser: Skynner, Michael J, Slater, Ruth, Sim, Joan A, Allen, Nick D, Herbison, Allan E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gonadotropin-releasing hormone-I (GnRH-I) is thought to be expressed by a single, highly spatially restricted group of neurons, which originate in the olfactory placode and migrate through the nose into the medial septum and hypothalamus from where they control fertility. Transgenic mice bearing a 13.5 kb GnRH-I-lacZ reporter construct were derived and found to express high levels of beta-galactosidase mRNA and protein within the septohypothalamic GnRH neurons in a correct temporal and spatial manner. Unexpectedly, low levels of beta-galactosidase were also present in three further populations of cells within the lateral septum, bed nucleus of the stria terminalis, and tectum. Analysis of wild-type mice with three different GnRH-I antibodies revealed distinct and transient patterns of GnRH-I peptide expression during development in all three of these populations revealed by transgenics. The synthesis of GnRH by cells of the lateral septum was the most persistent and remained until the third postnatal week. Embryonic "small eye" Pax-6 null mice, which fail to develop an olfactory placode, were also examined and shown to have equivalent populations of GnRH-I-immunoreactive cells in the lateral septum, tectum, and bed nucleus of the stria terminalis but none of the migrating cells that form the septohypothalamic GnRH population. These results prove that so-called "ectopic" expression in promoter transgenic lines can reflect authentic developmental patterns of gene expression. They further provide the first demonstration in mammalian brain that multiple neuronal populations of different embryological origin express GnRH-I peptide during embryonic and postnatal development.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.19-14-05955.1999