PTPRU, As A Tumor Suppressor, Inhibits Cancer Stemness By Attenuating Hippo/YAP Signaling Pathway

PTPRU is an important signaling molecule that regulates a variety of cellular processes; however, the role of PTPRU in cancer development has remained elusive. Here, we report that PTPRU serves as a tumor suppressor that inhibits cancer stemness by attenuating Hippo/YAP signaling pathway. Primary ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:OncoTargets and therapy 2019-01, Vol.12, p.8095-8104
Hauptverfasser: Gu, Jiayi, Zhang, Zhiqi, Lang, Tingyuan, Ma, Xinlin, Yang, Linxi, Xu, Jia, Tian, Cong, Han, Kun, Qiu, Jiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PTPRU is an important signaling molecule that regulates a variety of cellular processes; however, the role of PTPRU in cancer development has remained elusive. Here, we report that PTPRU serves as a tumor suppressor that inhibits cancer stemness by attenuating Hippo/YAP signaling pathway. Primary cancer cells and cell line cells were used in the study. The gene expression data were downloaded from R2 analysis and visualization platform and Kaplan-Meier analysis was performed to study the relationship between survival and PTPRU expression. qRT-PCR and Western blot were employed to study the expression of target genes in tissues and cells. Sphere and colony formation, proliferation, migration activities and the expression of stem cell and EMT markers were employed for characterizing the stemness. Gene manipulation was achieved by lentivirus-mediated gene delivery system. Luciferase reporter gene assay was used to study the transcriptional activity of the promoter, and ChIP-qPCR was employed to study the target binding sequence of the protein. Spearman correlation analysis was performed to study the correlation between two genes. Student's -test was used for determination of the significance between two experimental groups. PTPRU is downregulated in colorectal and gastric cancer tissues and cancer stem cells. High expression of PTPRU predicts poor prognosis. Overexpression of PTPRU attenuates the stemness of gastric cancer stem cells and knockdown of PTRPU improves the maintenance of the stemness of cancer stem cells. Mechanistic analysis showed that PTPRU inhibits Hippo/YAP signaling by suppressing the expression of YAP in a transcriptional level. Overexpression of YAP restored PTPRU-induced inhibited stemness of gastric cancer stem cells. PTPRU serves as a tumor suppressor that inhibits the stemness of cancer stem cell by inhibiting Hippo/YAP signaling pathway.
ISSN:1178-6930
1178-6930
DOI:10.2147/OTT.S218125