Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach
MicroRNA is attracting worldwide attention as a new marker for the identification of forensically relevant body fluids. A probabilistic discriminant model was constructed to identify venous blood, saliva, semen, and vaginal secretion, based on microRNA expression assessed via RT-qPCR. We quantified...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-10, Vol.9 (1), p.14332-10, Article 14332 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNA is attracting worldwide attention as a new marker for the identification of forensically relevant body fluids. A probabilistic discriminant model was constructed to identify venous blood, saliva, semen, and vaginal secretion, based on microRNA expression assessed via RT-qPCR. We quantified 15 candidate microRNAs in four types of body fluids by RT-qPCR and found that miR-144-3p, miR-451a-5p, miR-888-5p, miR-891a-5p, miR-203a-3p, miR-223-3p and miR-1260b were helpful to discriminate body fluids. Using the relative expression of seven candidate microRNAs in each body fluid, we implemented a partial least squares-discriminant analysis (PLS-DA) as a probabilistic discriminant model and distinguished four types of body fluids. Of 14 testing samples, 13 samples were correctly identified with >90% posterior probability. We also investigated the effects of microRNA expression in skin, semen infertility, and vaginal secretion during different menstrual phases. Semen infertility and menstrual phases did not affect our body fluid identification system. Therefore, the selected microRNAs were effective in identifying the four types of body fluids, indicating that probabilistic evaluation may be practical in forensic casework. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-50796-8 |