A wheat-Aegilops umbellulata addition line improves wheat agronomic traits and processing quality
Wheat processing quality is mainly correlated with high-molecular-weight glutenin subunits (HMW-GS) of grain endosperm. In bread wheat, the number of HMW-GS alleles are limited. However, wheat relative species possess numerous HMW-GS genes. In our previous study, a pair of novel HMW-GS 1Ux3.5+1Uy1.9...
Gespeichert in:
Veröffentlicht in: | Breeding Science 2019, Vol.69(3), pp.503-507 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wheat processing quality is mainly correlated with high-molecular-weight glutenin subunits (HMW-GS) of grain endosperm. In bread wheat, the number of HMW-GS alleles are limited. However, wheat relative species possess numerous HMW-GS genes. In our previous study, a pair of novel HMW-GS 1Ux3.5+1Uy1.9 was characterized in Aegilops umbellulata. In this work, a novel wheat-Ae. umbellulata addition line, GN05, carrying a pair of 1U chromosome was developed and identified via cytogenetic analysis. Protein composition analysis indicated that GN05 carried HMW-GS of Ae. umbellulata. Accumulation of glutenin macropolymer (GMP) showed that GN05 had a much higher GMP content than the recurrent parent Chinese Spring. Rheological characteristics were analyzed by mixing test and the dough quality of GN05 was significantly improved compared to Chinese Spring. The results presented here may provide a valuable resource for the improvement of bread wheat quality. |
---|---|
ISSN: | 1344-7610 1347-3735 |
DOI: | 10.1270/jsbbs.18200 |