Assessment of heterogeneity in an individual participant data meta‐analysis of prediction models: An overview and illustration
Clinical prediction models aim to provide estimates of absolute risk for a diagnostic or prognostic endpoint. Such models may be derived from data from various studies in the context of a meta‐analysis. We describe and propose approaches for assessing heterogeneity in predictor effects and predictio...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2019-09, Vol.38 (22), p.4290-4309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clinical prediction models aim to provide estimates of absolute risk for a diagnostic or prognostic endpoint. Such models may be derived from data from various studies in the context of a meta‐analysis. We describe and propose approaches for assessing heterogeneity in predictor effects and predictions arising from models based on data from different sources. These methods are illustrated in a case study with patients suffering from traumatic brain injury, where we aim to predict 6‐month mortality based on individual patient data using meta‐analytic techniques (15 studies, n = 11 022 patients). The insights into various aspects of heterogeneity are important to develop better models and understand problems with the transportability of absolute risk predictions. |
---|---|
ISSN: | 0277-6715 1097-0258 |
DOI: | 10.1002/sim.8296 |