Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer
The tumor immune microenvironment (TIME) of lung cancer brain metastasis is largely unexplored. We carried out immune profiling and sequencing analysis of paired resected primary tumors and brain metastases of non-small-cell lung carcinoma (NSCLC). TIME profiling of archival formalin-fixed and paraf...
Gespeichert in:
Veröffentlicht in: | Annals of oncology 2019-09, Vol.30 (9), p.1521-1530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tumor immune microenvironment (TIME) of lung cancer brain metastasis is largely unexplored. We carried out immune profiling and sequencing analysis of paired resected primary tumors and brain metastases of non-small-cell lung carcinoma (NSCLC).
TIME profiling of archival formalin-fixed and paraffin-embedded specimens of paired primary tumors and brain metastases from 39 patients with surgically resected NSCLCs was carried out using a 770 immune gene expression panel and by T-cell receptor beta repertoire (TCRβ) sequencing. Immunohistochemistry was carried out for validation. Targeted sequencing was carried out to catalog hot spot mutations in cancer genes.
Somatic hot spot mutations were mostly shared between both tumor sites (28/39 patients; 71%). We identified 161 differentially expressed genes, indicating inhibition of dendritic cell maturation, Th1, and leukocyte extravasation signaling pathways, in brain metastases compared with primary tumors (P |
---|---|
ISSN: | 0923-7534 1569-8041 |
DOI: | 10.1093/annonc/mdz207 |