Extracellular Signals That Regulate the Tangential Migration of Olfactory Bulb Neuronal Precursors: Inducers, Inhibitors, and Repellents

Neuronal migration is an essential developmental step in the construction of the vertebrate nervous system, but the extracellular signals involved in initiating and regulating neuronal movement remain unclear. Here we report the identification of a novel astrocyte-derived migration-inducing activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2001-10, Vol.21 (19), p.7654-7663
Hauptverfasser: Mason, Heather A, Ito, Susumu, Corfas, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuronal migration is an essential developmental step in the construction of the vertebrate nervous system, but the extracellular signals involved in initiating and regulating neuronal movement remain unclear. Here we report the identification of a novel astrocyte-derived migration-inducing activity (MIA). Using an in vitro assay, we show that MIA induces the migration of olfactory bulb interneuron precursors, increasing the number of migrating cells and the distance they move. We established quantitative criteria to distinguish between the biological effects of inducers, inhibitors, repellents, and attractants on migrating cells and used them to compare the effects of MIA with those of Slit, a putative repulsive guidance cue. Our analysis demonstrates that, by themselves, MIA induces and Slit inhibits migration from subventricular zone explants. However, when presented together with MIA, Slit acts as a repellent. This study shows that glial cells play a critical role in initiating and modulating the movement of neuronal precursors through the release of a diffusible protein. Moreover, this study provides evidence that the guidance of migrating neuronal precursors is an integrative process, resulting from the cooperation of distinct extracellular factors, and that the function of Slit is context dependent.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.21-19-07654.2001