Neurodegenerative and Neuroprotective Effects of Tumor Necrosis Factor (TNF) in Retinal Ischemia: Opposite Roles of TNF Receptor 1 and TNF Receptor 2

Tumor necrosis factor (TNF) is an important factor in various acute and chronic neurodegenerative disorders. In retinal ischemia, we show early, transient upregulation of TNF, TNF receptor 1 (TNF-R1), and TNF-R2 6 hr after reperfusion preceding neuronal cell loss. To assess the specific role of TNF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2002-04, Vol.22 (7), p.216-RC216
Hauptverfasser: Fontaine, Valerie, Mohand-Said, Saddek, Hanoteau, Noelle, Fuchs, Celine, Pfizenmaier, Klaus, Eisel, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor necrosis factor (TNF) is an important factor in various acute and chronic neurodegenerative disorders. In retinal ischemia, we show early, transient upregulation of TNF, TNF receptor 1 (TNF-R1), and TNF-R2 6 hr after reperfusion preceding neuronal cell loss. To assess the specific role of TNF and its receptors, we compared ischemia-reperfusion-induced retinal damage in mice deficient for TNF-R1, TNF-R2, or TNF by quantifying neuronal cell loss 8 d after the insult. Surprisingly, TNF deficiency did not affect overall cell loss, yet absence of TNF-R1 led to a strong reduction of neurodegeneration and lack of TNF-R2 led to an enhancement of neurodegeneration, indicative of TNF-independent and TNF-dependent processes in the retina, with TNF-R1 augmenting neuronal death and TNF-R2 promoting neuroprotection. Western blot analyses of retinas revealed that reduction of neuronal cell loss in TNF-R1/ animals correlated with the presence of activated Akt/protein kinase B (PKB). Inhibition of the phosphatidylinositol 3-kinase signaling pathway reverted neuroprotection in TNF-R1-deficient mice, indicating an instrumental role of Akt/PKB in neuroprotection and TNF-R2 dependence of this pathway. Selective inhibition of TNF-R1 function may represent a new approach to reduce ischemia-induced neuronal damage, being potentially superior to strategies aimed at suppression of TNF activity in general.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.22-07-j0001.2002