Lentivirally Delivered Glial Cell Line-Derived Neurotrophic Factor Increases the Number of Striatal Dopaminergic Neurons in Primate Models of Nigrostriatal Degeneration

The primate striatum contains tyrosine hydroxylase (TH)-immunoreactive (ir) neurons, the numbers of which are augmented after dopamine depletion. Glial cell line-derived neurotrophic factor (GDNF) strongly modulates the viability and phenotypic expression of dopamine ventral mesencephalic neurons. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2002-06, Vol.22 (12), p.4942-4954
Hauptverfasser: Palfi, Stephane, Leventhal, Liza, Chu, Yaping, Ma, Shuang Y, Emborg, Marina, Bakay, Roy, Deglon, Nicole, Hantraye, Philippe, Aebischer, Patrick, Kordower, Jeffrey H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primate striatum contains tyrosine hydroxylase (TH)-immunoreactive (ir) neurons, the numbers of which are augmented after dopamine depletion. Glial cell line-derived neurotrophic factor (GDNF) strongly modulates the viability and phenotypic expression of dopamine ventral mesencephalic neurons. The effect of GDNF on TH-ir neurons intrinsic to the striatum has yet to be investigated. In the present study, stereological counts of TH-ir striatal neurons in aged and parkinsonian nonhuman primates revealed that GDNF delivered via a lentiviral vector (lenti-) further increased the number of these cells. Aged monkeys treated with lenti-GDNF displayed an eightfold increase in TH-ir neurons relative to lenti-beta-galactosidase-treated monkeys. Unilateral 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine treatment alone in young monkeys resulted in a bilateral eightfold increase in TH-ir striatal cells. This effect was further magnified sevenfold on the side of lenti-GDNF treatment. These cells colocalized with the neuronal marker neuronal-specific nuclear protein. Some of these cells colocalized with GDNF-ir, indicating that an alteration in phenotype may occur by the direct actions of this trophic factor. Thus, GDNF may mediate plasticity in the dopamine-depleted primate brain, which may serve to compensate for cell loss by converting striatal neurons to a dopaminergic phenotype.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.22-12-04942.2002