Activation of Hypoxia-Inducible Factor-1 in the Rat Cerebral Cortex after Transient Global Ischemia: Potential Role of Insulin-Like Growth Factor-1
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates the adaptive response to hypoxia in mammalian cells. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit HIF-1beta. In this study we analyzed HIF...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2002-10, Vol.22 (20), p.8922-8931 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates the adaptive response to hypoxia in mammalian cells. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit HIF-1beta. In this study we analyzed HIF-1alpha expression in the rat cerebral cortex after transient global ischemia induced by cardiac arrest and resuscitation. Our results showed that HIF-1alpha accumulates as early as 1 hr of recovery and persists for at least 7 d. In addition, the expression of HIF-1 target genes, erythropoietin and Glut-1, were induced at 12 hr to 7d of recovery. A logical explanation for HIF-1alpha accumulation might be that the brain remained hypoxic for prolonged periods after resuscitation. By using the hypoxic marker 2-(2-nitroimidazole-1[H]-y1)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide (EF5), we showed that the brain is hypoxic during the first hours of recovery from cardiac arrest, but the tissue is no longer hypoxic at 2 d. Thus, the initial ischemic episode must have activated other nonhypoxic mechanisms that maintain prolonged HIF-1alpha accumulation. One such mechanism might be initiated by insulin-like growth factor-1 (IGF-1). Our results showed that IGF-1 expression was upregulated after cardiac arrest and resuscitation. In addition, we showed that IGF-1 was able to induce HIF-1alpha in pheochromocytoma cells and cultured neurons as well as in the brain of rats that received intracerebroventricular and systemic IGF-1 infusion. Moreover, infusion of a selective IGF-1 receptor antagonist abrogates HIF-1alpha accumulation after cardiac arrest and resuscitation. Our study suggest that activation of HIF-1 might be part of the mechanism by which IGF-1 promotes cell survival after cerebral ischemia. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.22-20-08922.2002 |