Dual-Reactivity trans-Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching

Sulfenylation (RSH → RSOH) is a post-translational protein modification associated with cellular mechanisms for signal transduction and the regulation of reactive oxygen species. Protein sulfenic acids are challenging to identify and study due to their electrophilic and transient nature. Described h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-07, Vol.141 (28), p.10932-10937
Hauptverfasser: Scinto, Samuel L, Ekanayake, Oshini, Seneviratne, Uthpala, Pigga, Jessica E, Boyd, Samantha J, Taylor, Michael T, Liu, Jun, am Ende, Christopher W, Rozovsky, Sharon, Fox, Joseph M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfenylation (RSH → RSOH) is a post-translational protein modification associated with cellular mechanisms for signal transduction and the regulation of reactive oxygen species. Protein sulfenic acids are challenging to identify and study due to their electrophilic and transient nature. Described here are sulfenic acid modifying trans-cycloocten-5-ol (SAM-TCO) probes for labeling sulfenic acid functionality in live cells. These probes enable a new mode of capturing sulfenic acids via transannular thioetherification, whereas “ordinary” trans-cyclooctenes react only slowly with sulfenic acids. SAM-TCOs combine with sulfenic acid forms of a model peptide and proteins to form stable adducts. Analogously, SAM-TCO with the selenenic acid form of a model protein leads to a selenoetherification product. Control experiments illustrate the need for the transannulation process coupled with the activated trans-cycloalkene functionality. Bioorthogonal quenching of excess unreacted SAM-TCOs with tetrazines in live cells provides both temporal control and a means of preventing artifacts caused by cellular-lysis. A SAM-TCO biotin conjugate was used to label protein sulfenic acids in live cells, and subsequent quenching by tetrazine prevented further labeling even under harshly oxidizing conditions. A cell-based proteomic study validates the ability of SAM-TCO probes to identify and quantify known sulfenic acid redox proteins as well as targets not captured by dimedone-based probes.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b01164