Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation

Three types of glaucony grains were identified in the late Eocene (~35.5–34.1 Ma) sediments from Ocean Drilling Program (ODP) Hole 696B in the northwestern Weddell Sea (Antarctica). The grains are K 2 O-rich (~7 wt%) and formed by smectite-poor interstratified ~10 Å glauconite-smectite with flaky/ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-09, Vol.9 (1), p.13580-12, Article 13580
Hauptverfasser: López-Quirós, Adrián, Escutia, Carlota, Sánchez-Navas, Antonio, Nieto, Fernando, Garcia-Casco, Antonio, Martín-Algarra, Agustín, Evangelinos, Dimitris, Salabarnada, Ariadna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three types of glaucony grains were identified in the late Eocene (~35.5–34.1 Ma) sediments from Ocean Drilling Program (ODP) Hole 696B in the northwestern Weddell Sea (Antarctica). The grains are K 2 O-rich (~7 wt%) and formed by smectite-poor interstratified ~10 Å glauconite-smectite with flaky/rosette-shaped surface nanostructures. Two glaucony types reflect an evolved (types 1 and 2 glaucony; less mature to mature) stage and long term glauconitization, attesting to the glaucony grains being formed in situ , whereas the third type (type 3 glaucony) shows evidences of alteration and reworking from nearby areas. Conditions for the glaucony authigenesis occurred in an open-shelf environment deeper than 50 m, under sub-oxic conditions near the sediment-water interface. These environmental conditions were triggered by low sedimentation rates and recurrent winnowing action by bottom-currents, leading to stratigraphic condensation. The condensed glaucony-bearing section provides an overview of continuous sea-level rise conditions pre-dating the onset of Antarctic glaciation during the Eocene-Oligocene transition. Sediment burial, drop of O 2 levels, and ongoing reducing (postoxic to sulphidic) conditions at Hole 696B, resulting in iron-sulphide precipitation, were a key limiting factor for the glauconitization by sequestration of Fe 2+ .
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-50107-1