A Synthetic Model of Enzymatic [Fe4S4]–Alkyl Intermediates

Although alkyl complexes of [Fe4S4] clusters have been invoked as intermediates in a number of enzymatic reactions, obtaining a detailed understanding of their reactivity patterns and electronic structures has been difficult owing to their transient nature. To address this challenge, we herein repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-08, Vol.141 (34), p.13330-13335
Hauptverfasser: Ye, Mengshan, Thompson, Niklas B, Brown, Alexandra C, Suess, Daniel L. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although alkyl complexes of [Fe4S4] clusters have been invoked as intermediates in a number of enzymatic reactions, obtaining a detailed understanding of their reactivity patterns and electronic structures has been difficult owing to their transient nature. To address this challenge, we herein report the synthesis and characterization of a 3:1 site-differentiated [Fe4S4]2+–alkyl cluster. Whereas [Fe4S4]2+ clusters typically exhibit pairwise delocalized electronic structures in which each Fe has a formal valence of 2.5+, Mössbauer spectroscopic and computational studies suggest that the highly electron-releasing alkyl group partially localizes the charge distribution within the cubane, an effect that has not been previously observed in tetrahedrally coordinated [Fe4S4] clusters.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.9b06975