Multipoint targeting of TGF-β/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis
Cardiac fibrosis is a common precursor to ventricular dysfunction and eventual heart failure, and cardiac fibrosis begins with cardiac fibroblast activation. Here we have demonstrated that the TGF-β signaling pathway and Wnt signaling pathway formed a transactivation circuit during cardiac fibroblas...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2019-06, Vol.26 (6), p.1107-1123 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiac fibrosis is a common precursor to ventricular dysfunction and eventual heart failure, and cardiac fibrosis begins with cardiac fibroblast activation. Here we have demonstrated that the TGF-β signaling pathway and Wnt signaling pathway formed a transactivation circuit during cardiac fibroblast activation and that miR-384-5p is a key regulator of the transactivation circuit. The results of in vitro study indicated that TGF-β activated an auto-positive feedback loop by increasing Wnt production in cardiac fibroblasts, and Wnt neutralizing antibodies disrupted the feedback loop. Also, we demonstrated that miR-384-5p simultaneously targeted the key receptors of the TGF-β/Wnt transactivation circuit and significantly attenuated both TGF-β-induced cardiac fibroblast activation and ischemia-reperfusion-induced cardiac fibrosis. In addition, small molecule that prevented pro-fibrogenic stimulus-induced downregulation of endogenous miR-384-5p significantly suppressed cardiac fibroblast activation and cardiac fibrosis. In conclusion, modulating a key endogenous miRNA targeting multiple components of the TGF-β/Wnt transactivation circuit can be an effective means to control cardiac fibrosis and has great therapeutic potential. |
---|---|
ISSN: | 1350-9047 1476-5403 |
DOI: | 10.1038/s41418-018-0187-3 |