Numerical Study on Transient State of Inductive Fault Current Limiter Based on Field-Circuit Coupling Method

As the capacity of the power grid continues to expand, high-level fault currents might be caused during a contingency, and the problem of short-circuit current over-limitation is imminent. The high-temperature superconducting (HTS) fault current limiter (FCL) is an effective method to solve this pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-08, Vol.12 (17), p.2805
Hauptverfasser: Li, Wenrong, Sheng, Jie, Qiu, Derong, Cheng, Junbo, Ye, Haosheng, Hong, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the capacity of the power grid continues to expand, high-level fault currents might be caused during a contingency, and the problem of short-circuit current over-limitation is imminent. The high-temperature superconducting (HTS) fault current limiter (FCL) is an effective method to solve this problem. In this paper, a transient numerical model for the process of limiting current in the inductive FCL is proposed. The model is based on the coupling of multiphysics finite element simulation and a circuit model. The voltage source is used as input, which can simulate the macroscopic characteristics in the process of limiting current, such as the voltage and current waveforms, and can also simulate microscopic characteristics, such as temperature, magnetic field, and electrodynamic force distribution. The short-circuit experimental data of an air core inductive superconducting fault current limiter (SFCL) prototype was compared with the simulation results to verify the reliability of the simulation.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12172805