Compost Quality Recommendations for Remediating Urban Soils

Poor soil health is a critical problem in many urban landscapes. Degraded soil restricts plant growth and microorganism activity, limiting the ability of urban landscapes to perform much needed ecosystem services. Incorporation of approximately 33% compost by volume into degraded soil has been prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2019-09, Vol.16 (17), p.3191
Hauptverfasser: Heyman, Hannah, Bassuk, Nina, Bonhotal, Jean, Walter, Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poor soil health is a critical problem in many urban landscapes. Degraded soil restricts plant growth and microorganism activity, limiting the ability of urban landscapes to perform much needed ecosystem services. Incorporation of approximately 33% compost by volume into degraded soil has been proven to improve soil health and structure over time while avoiding the financial and environmental costs of importing soil mixes from elsewhere. However, additions of high volumes of compost could potentially increase the risk of nutrient loss through leaching and runoff. The objective of our study was to consider the effects of different compost amendments on soil health, plant health and susceptibility to nutrient leaching in order to identify ranges of acceptable compost characteristics that could be used for soil remediation in the urban landscape. A bioassay was conducted with Phaseolus vulgaris (Bush Bean) to measure the effect of nine composts from different feedstocks on various plant health parameters. Leachate was collected prior to planting to measure nutrient loss from each treatment. All compost amendments were found to improve soil health. Nutrient-rich, manure-based composts produced the greatest plant growth, but also leached high concentrations of nitrate and phosphorus. Some treatments provided sufficient nutrients for plant growth without excess nutrient loss. When incorporating as much as 33% compost by volume into a landscape bed, the optimal compost will generally have a C:N ratio of 10-20, P-content
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph16173191