Methyltransferase-like 21c methylates and stabilizes the heat shock protein Hspa8 in type I myofibers in mice

Protein methyltransferases mediate posttranslational modifications of both histone and nonhistone proteins. Whereas histone methylation is well-known to regulate gene expression, the biological significance of nonhistone methylation is poorly understood. Methyltransferase-like 21c (Mettl21c) is a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-09, Vol.294 (37), p.13718-13728
Hauptverfasser: Wang, Chao, Arrington, Justine, Ratliff, Anna C., Chen, Jingjuan, Horton, Hannah E., Nie, Yaohui, Yue, Feng, Hrycyna, Christine A., Tao, W. Andy, Kuang, Shihuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein methyltransferases mediate posttranslational modifications of both histone and nonhistone proteins. Whereas histone methylation is well-known to regulate gene expression, the biological significance of nonhistone methylation is poorly understood. Methyltransferase-like 21c (Mettl21c) is a newly classified nonhistone lysine methyltransferase whose in vivo function has remained elusive. Using a Mettl21cLacZ knockin mouse model, we show here that Mettl21c expression is absent during myogenesis and restricted to mature type I (slow) myofibers in the muscle. Using co-immunoprecipitation, MS, and methylation assays, we demonstrate that Mettl21c trimethylates heat shock protein 8 (Hspa8) at Lys-561 to enhance its stability. As such, Mettl21c knockout reduced Hspa8 trimethylation and protein levels in slow muscles, and Mettl21c overexpression in myoblasts increased Hspa8 trimethylation and protein levels. We further show that Mettl21c-mediated stabilization of Hspa8 enhances its function in chaperone-mediated autophagy, leading to degradation of client proteins such as the transcription factors myocyte enhancer factor 2A (Mef2A) and Mef2D. In contrast, Mettl21c knockout increased Mef2 protein levels in slow muscles. These results identify Hspa8 as a Mettl21c substrate and reveal that nonhistone methylation has a physiological function in protein stabilization.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA119.008430