Brain Structures Differ between Musicians and Non-Musicians
From an early age, musicians learn complex motor and auditory skills (e.g., the translation of visually perceived musical symbols into motor commands with simultaneous auditory monitoring of output), which they practice extensively from childhood throughout their entire careers. Using a voxel-by-vox...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2003-10, Vol.23 (27), p.9240-9245 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From an early age, musicians learn complex motor and auditory skills (e.g., the translation of visually perceived musical symbols into motor commands with simultaneous auditory monitoring of output), which they practice extensively from childhood throughout their entire careers. Using a voxel-by-voxel morphometric technique, we found gray matter volume differences in motor, auditory, and visual-spatial brain regions when comparing professional musicians (keyboard players) with a matched group of amateur musicians and non-musicians. Although some of these multiregional differences could be attributable to innate predisposition, we believe they may represent structural adaptations in response to long-term skill acquisition and the repetitive rehearsal of those skills. This hypothesis is supported by the strong association we found between structural differences, musician status, and practice intensity, as well as the wealth of supporting animal data showing structural changes in response to long-term motor training. However, only future experiments can determine the relative contribution of predisposition and practice. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.23-27-09240.2003 |