Selective Breeding, Quantitative Trait Locus Analysis, and Gene Arrays Identify Candidate Genes for Complex Drug-Related Behaviors

Acute functional tolerance to ethanol develops during a single exposure to ethanol; it has been suggested to be a predisposing factor for the development of ethanol dependence. Genetic determinants of acute functional tolerance, as well as of ethanol dependence, have been clearly demonstrated. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2003-06, Vol.23 (11), p.4491-4498
Hauptverfasser: Tabakoff, Boris, Bhave, Sanjiv V, Hoffman, Paula L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute functional tolerance to ethanol develops during a single exposure to ethanol; it has been suggested to be a predisposing factor for the development of ethanol dependence. Genetic determinants of acute functional tolerance, as well as of ethanol dependence, have been clearly demonstrated. We describe a novel approach that uses a combination of selective breeding (to segregate genes contributing to the phenotype of interest, i.e., acute functional tolerance to the incoordinating effect of ethanol), quantitative trait locus analysis (to define chromosomal regions associated with acute functional tolerance), and DNA microarray technology (to identify differentially expressed genes in the brains of the selected lines of mice) to identify candidate genes for the complex phenotype of ethanol tolerance. The results indicate the importance of a signal transduction cascade that involves the glutamate receptor delta2 protein, the Ephrin B3 ligand, and the NMDA receptor, as well as a transcriptional regulatory protein that may be induced by activation of the NMDA receptor (zinc finger protein 179) and a protein that can modulate downstream responses to NMDA receptor activation (peroxiredoxin), in mediating acute tolerance to the incoordinating effect of ethanol.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.23-11-04491.2003