Hydrogen sulfide inhibits Ca2+-induced mitochondrial permeability transition pore opening in type-1 diabetes

Hydrogen sulfide (H2S) attenuates N-methyl-d-aspartate receptor-R1 (NMDA-R1) and mitigates diabetic renal damage; however, the molecular mechanism is not well known. Whereas NMDA-R1 facilitates Ca2+ permeability, H2S is known to inhibit L-type Ca2+ channel. High Ca2+ activates cyclophilin D (CypD),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2019-08, Vol.317 (2), p.E269-E283
Hauptverfasser: John, A Sashi Papu, Kundu, Sourav, Pushpakumar, Sathnur, Amin, Matthew, Tyagi, Suresh C, Sen, Utpal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen sulfide (H2S) attenuates N-methyl-d-aspartate receptor-R1 (NMDA-R1) and mitigates diabetic renal damage; however, the molecular mechanism is not well known. Whereas NMDA-R1 facilitates Ca2+ permeability, H2S is known to inhibit L-type Ca2+ channel. High Ca2+ activates cyclophilin D (CypD), a gatekeeper protein of mitochondrial permeability transition pore (MPTP), thus facilitating molecular exchange between matrix and cytoplasm causing oxidative outburst and cell death. We tested the hypothesis of whether NMDA-R1 mediates Ca2+ influx causing CypD activation and MPTP opening leading to oxidative stress and renal injury in diabetes. We also tested whether H2S treatment blocks Ca2+ channel and thus inhibits CypD and MPTP opening to prevent renal damage. C57BL/6J and Akita (C57BL/6J-Ins2Akita) mice were treated without or with H2S donor GYY4137 (0.25 mg·kg−1·day−1 ip) for 8 wk. In vitro studies were performed using mouse glomerular endothelial cells. Results indicated that low levels of H2S and increased expression of NMDA-R1 in diabetes induced Ca2+ permeability, which was ameliorated by H2S treatment. We observed cytosolic Ca2+ influx in hyperglycemic (HG) condition along with mitochondrial-CypD activation, increased MPTP opening, and oxidative outburst, which were mitigated with H2S treatment. Renal injury biomarker KIM-1 was upregulated in HG conditions and normalized following H2S treatment. Inhibition of NMDA-R1 by pharmacological blocker MK-801 revealed similar results. We conclude that NMDA-R1-mediated Ca2+ influx in diabetes induces MPTP opening via CypD activation leading to increased oxidative stress and renal injury, and H2S protects diabetic kidney from injury by blocking mitochondrial Ca2+ permeability through NMDA-R1 pathway.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00251.2018