MCP-1 promotes detrimental cardiac physiology, pulmonary edema, and death in the cpk model of polycystic kidney disease

Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2019-08, Vol.317 (2), p.F343-F360
Hauptverfasser: Salah, Sally M, Meisenheimer, James D, Rao, Reena, Peda, Jacqueline D, Wallace, Darren P, Foster, Dawson, Li, Xiaogang, Li, Xiaoyan, Zhou, Xia, Vallejo, Julian A, Wacker, Michael J, Fields, Timothy A, Swenson-Fields, Katherine I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury that is accompanied by immune cell infiltration, including macrophages, which we and others have shown can promote disease progression in PKD mouse models. Here, we show that monocyte chemoattractant protein-1 [MCP-1/chemokine (C-C motif) ligand 2 (CCL2)] is responsible for the majority of monocyte chemoattractant activity produced by renal PKD cells from both mice and humans. To test whether the absence of MCP-1 lowers renal macrophage concentration and slows disease progression, we generated genetic knockout (KO) of MCP-1 in a mouse model of PKD [congenital polycystic kidney ( ) mice]. mice are born with rapidly expanding renal cysts, accompanied by a decline in kidney function and death by . Here, we report that KO of MCP-1 in these mice increased survival, with some mice living past 3 mo. Surprisingly, however, there was no significant difference in renal macrophage concentration, nor was there improvement in cystic disease or kidney function. Examination of mice revealed cardiac hypertrophy in mice, and measurement of cardiac electrical activity via ECG revealed repolarization abnormalities. MCP-1 KO did not affect the number of cardiac macrophages, nor did it alleviate the cardiac aberrancies. However, MCP-1 KO did prevent the development of pulmonary edema, which occurred in mice, and promoted decreased resting heart rate and increased heart rate variability in both and noncystic mice. These data suggest that in this mouse model of PKD, MCP-1 altered cardiac/pulmonary function and promoted death outside of its role as a macrophage chemoattractant.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00240.2018