Role of Purpurin as a Retinol-Binding Protein in Goldfish Retina during the Early Stage of Optic Nerve Regeneration: Its Priming Action on Neurite Outgrowth

Unlike mammals, the fish optic nerve can regenerate after injury. So far, many growth or trophic factors have been shown as an axon-regenerating molecule. However, it is totally unknown what substance regulates or triggers the activity of these factors on axonal elongation. Therefore, we constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2004-09, Vol.24 (38), p.8346-8353
Hauptverfasser: Matsukawa, Toru, Sugitani, Kayo, Mawatari, Kazuhiro, Koriyama, Yoshiki, Liu, Zhongwu, Tanaka, Masayuki, Kato, Satoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike mammals, the fish optic nerve can regenerate after injury. So far, many growth or trophic factors have been shown as an axon-regenerating molecule. However, it is totally unknown what substance regulates or triggers the activity of these factors on axonal elongation. Therefore, we constructed a goldfish retina cDNA library prepared from the retina treated with optic nerve transection 5 d previously, when it was just before regrowing optic axons after injury. A cDNA clone for goldfish purpurin for which expression was upregulated during the early stage of optic nerve regeneration was isolated from the retina cDNA library. Purpurin was discovered as a secretory retinol-binding protein in developing chicken retinas. Levels of purpurin mRNA and protein transiently increased and rapidly decreased 2-5 d and 10 d after axotomy, respectively. Purpurin mRNA was localized to the photoreceptor cells, whereas the protein was diffusely found in all of the retinal layers. A recombinant purpurin alone did not affect any change of neurite outgrowth in explant culture of the control retina, whereas a concomitant addition of the recombinant purpurin and retinol first induced a drastic enhancement of neurite outgrowth. Furthermore, the action of retinol-bound purpurin was effective only in the control (untreated) retinas but not in those primed (treated) with a previous optic nerve transection. Thus, purpurin with retinol is the first candidate molecule of priming neurite outgrowth in the early stage of optic nerve regeneration in fish.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1809-04.2004