Protein kinase C delta mediates cerebral reperfusion injury in vivo

Protein kinase C (PKC) has been implicated in mediating ischemic and reperfusion damage in multiple organs. However, conflicting reports exist on the role of individual PKC isozymes in cerebral ischemic injury. Using a peptide inhibitor selective for deltaPKC, deltaV1-1, we found that deltaPKC inhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2004-08, Vol.24 (31), p.6880-6888
Hauptverfasser: Bright, Rachel, Raval, Ami P, Dembner, Jeffrey M, Pérez-Pinzón, Miguel A, Steinberg, Gary K, Yenari, Midori A, Mochly-Rosen, Daria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein kinase C (PKC) has been implicated in mediating ischemic and reperfusion damage in multiple organs. However, conflicting reports exist on the role of individual PKC isozymes in cerebral ischemic injury. Using a peptide inhibitor selective for deltaPKC, deltaV1-1, we found that deltaPKC inhibition reduced cellular injury in a rat hippocampal slice model of cerebral ischemia [oxygen-glucose deprivation (OGD)] when present both during OGD and for the first 3 hr of reperfusion. We next demonstrated peptide delivery to the brain parenchyma after in vivo delivery by detecting biotin-conjugateddeltaV1-1 and by measuring inhibition of intracellular deltaPKC translocation, an indicator of deltaPKC activity. Delivery of deltaV1-1 decreased infarct size in an in vivo rat stroke model of transient middle cerebral artery occlusion. Importantly, deltaV1-1 had no effect when delivered immediately before ischemia. However, delivery at the onset, at 1 hr, or at 6 hr of reperfusion reduced injury by 68, 47, and 58%, respectively. Previous work has implicated deltaPKC in mediating apoptotic processes. We therefore determined whether deltaPKC inhibition altered apoptotic cell death or cell survival pathways in our models. We found that deltaV1-1 reduced numbers of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells, indicating decreased apoptosis, increased levels of phospho-Akt, a kinase involved in cell survival pathways, and inhibited BAD (Bcl-2-associated death protein) protein translocation from the cell cytosol to the membrane, indicating inhibition of proapoptotic signaling. These data support a deleterious role for deltaPKC during reperfusion and suggest that deltaV1-1 delivery, even hours after commencement of reperfusion, may provide a therapeutic advantage after cerebral ischemia.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.4474-03.2004