Thyroid Hormone Disruption in the Fetal and Neonatal Rat: Predictive Hormone Measures and Bioindicators of Hormone Action in the Developing Cortex
Abstract Adverse neurodevelopmental consequences remain a primary concern when evaluating the effects of thyroid hormone (TH) disrupting chemicals. Though the developing brain is a known target of TH insufficiency, the relationship between THs in the serum and the central nervous system is not well...
Gespeichert in:
Veröffentlicht in: | Toxicological sciences 2018-11, Vol.166 (1), p.163-179 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Adverse neurodevelopmental consequences remain a primary concern when evaluating the effects of thyroid hormone (TH) disrupting chemicals. Though the developing brain is a known target of TH insufficiency, the relationship between THs in the serum and the central nervous system is not well characterized. To address this issue, dose response experiments were performed in pregnant rats using the goitrogen propylthiouracil (PTU) (dose range 0.1–10 ppm). THs were quantified in the serum and brain of offspring at gestational day 20 (GD20) and postnatal day 14 (PN14), two developmental stages included in OECD and EPA regulatory guideline/guidance studies. From the dose response data, the quantitative relationships between THs in the serum and brain were determined. Next, targeted gene expression analyses were performed in the fetal and neonatal cortex to test the hypothesis that TH action in the developing brain is linked to changes in TH concentrations within the tissue. Results show a significant reduction of T4/T3 in the serum and brain of the GD20 fetus in response to low doses of PTU; interestingly, very few genes were significantly different at any dose tested. In the PN14 pup significant reductions of T4/T3 in the serum and brain were also detected; however, twelve transcriptional targets were identified in the neonatal cortex that correlated well with reduced brain THs. These results show that serum T4 is a good predictor of brain THs, and offer several target genes that could serve as pragmatic readouts of T4/T3 dysfunction within the PN14 cortex. |
---|---|
ISSN: | 1096-6080 1096-0929 1096-0929 |
DOI: | 10.1093/toxsci/kfy190 |