Alkali Postdeposition Treatment-Induced Changes of the Chemical and Electronic Structure of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers: A First-Principle Perspective
The effects of alkali postdeposition treatment (PDT) on the valence band structure of Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorbers are addressed from a first-principles perspective. In detail, experimentally derived hard X-ray photoelectron spectroscopy (HAXPES) data [ Handick, E. ; ACS App...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (3), p.3024-3033 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of alkali postdeposition treatment (PDT) on the valence band structure of Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorbers are addressed from a first-principles perspective. In detail, experimentally derived hard X-ray photoelectron spectroscopy (HAXPES) data [ Handick, E. ; ACS Appl. Mater. Interfaces 2015, 7, 27414−27420 ] of the valence band structure of alkali-free and NaF/KF-PDT CIGSe are directly compared and fit by calculated density of states (DOS) of CuInSe2, its Cu-deficient counterpart CuIn5Se8, and different potentially formed secondary phases, such as KInSe2, InSe, and In2Se3. The DOSs are based on first-principles electronic structure calculations and weighted according to element-, symmetry-, and energy-dependent photoionization cross sections for the comparison to experimental data. The HAXPES spectra were recorded using photon energies ranging from 2 to 8 keV, allowing extraction of information from different sample depths. The analysis of the alkali-free CIGSe valence band structure reveals that it can best be described by a mixture of the DOS of CuInSe2 and CuIn5Se8, resulting in a stoichiometry slightly more Cu-rich than that of CuIn3Se5. The NaF/KF-PDT-induced changes in the HAXPES spectra for different alkali exposures are best reproduced by additional contributions from KInSe2, with some indications that the formation of a pronounced K–In–Se-type surface species might crucially depend on the amount of K available during PDT. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.8b18216 |