Sleep-Dependent Plasticity Requires Cortical Activity
Recent findings in humans and animals suggest that sleep promotes synaptic plasticity, but the underlying mechanisms have not been identified. We have demonstrated recently an important role for sleep in ocular dominance (OD) plasticity, a classic form of in vivo cortical remodeling triggered by mon...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2005-10, Vol.25 (40), p.9266-9274 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent findings in humans and animals suggest that sleep promotes synaptic plasticity, but the underlying mechanisms have not been identified. We have demonstrated recently an important role for sleep in ocular dominance (OD) plasticity, a classic form of in vivo cortical remodeling triggered by monocular deprivation (MD) during a critical period of development. The mechanisms responsible for the effects of sleep on OD plasticity are unknown but may depend on neuronal activity in the sleeping brain. We investigated the role of cortical activity in sleep-dependent plasticity by reversibly inactivating the sleeping visual cortex (V1) after a period of MD. Critical period cats were bilaterally implanted with cannulas in V1 and standard EEG/EMG electrodes for polysomnographic recording. After a period of MD, visual cortices were infused with the sodium channel blocker lidocaine in vehicle or vehicle only during sleep. A third group of cats served as sham controls and were infused with lidocaine outside of V1 (into the CSF). Both optical imaging of intrinsic cortical signals and microelectrode recordings showed that OD plasticity was significantly reduced in cats whose visual cortices were reversibly silenced during sleep. These findings demonstrate that the mechanisms governing this form of sleep-dependent plasticity require cortical activity. They provide an important insight into how sleep modifies synaptic circuitry by narrowing the range of possible candidate mechanisms to those that are activity dependent. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.2722-05.2005 |