Homer2 Is Necessary for EtOH-Induced Neuroplasticity

Homer proteins are integral to the assembly of proteins regulating glutamate signaling and synaptic plasticity. Constitutive Homer2 gene deletion [knock-out (KO)] and rescue with adeno-associated viral (AAV) transfection of Homer2b was used to demonstrate the importance of Homer proteins in neuropla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-07, Vol.25 (30), p.7054-7061
Hauptverfasser: Szumlinski, Karen K, Lominac, Kevin D, Oleson, Erik B, Walker, Jennifer K, Mason, Ashley, Dehoff, Marlin H, Klugman, Matthias, Cagle, Stephanie, Welt, Kristine, During, Matthew, Worley, Paul F, Middaugh, Lawrence D, Kalivas, Peter W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homer proteins are integral to the assembly of proteins regulating glutamate signaling and synaptic plasticity. Constitutive Homer2 gene deletion [knock-out (KO)] and rescue with adeno-associated viral (AAV) transfection of Homer2b was used to demonstrate the importance of Homer proteins in neuroplasticity produced by repeated ethanol (EtOH) administration. Homer2 KO mice avoided drinking high concentrations of EtOH and did not develop place preference or locomotor sensitization after repeated EtOH administration. The deficient behavioral plasticity to EtOH after Homer2 deletion was paralleled by a lack of augmentation in the rise in extracellular dopamine and glutamate elicited by repeated EtOH injections. The genotypic differences in EtOH-induced change in behavior and neurochemistry were essentially reversed by AAV-mediated transfection of Homer2b into accumbens cells including, differences in EtOH preference, locomotor sensitization, and EtOH-induced elevations in extracellular glutamate and dopamine. These data demonstrate a necessary and active role for accumbens Homer2 expression in regulating EtOH-induced behavioral and cellular neuroplasticity.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1529-05.2005