Inhibition of Conditioned Stimulus Pathway Phosphoprotein 24 Expression Blocks the Reduction in A-Type Transient K+ Current Produced by One-Trial In Vitro Conditioning of Hermissenda

Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-05, Vol.25 (19), p.4793-4800
Hauptverfasser: Yamoah, Ebenezer N, Levic, Snezana, Redell, John B, Crow, Terry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the control of cellular plasticity. One-trial conditioning in Hermissenda results in enhanced excitability in sensory neurons, type B photoreceptors, of the conditioned stimulus pathway. Conditioning also regulates the phosphorylation of conditioned stimulus pathway phosphoprotein 24 (Csp24), a cytoskeletal-related protein containing multiple beta-thymosin-like domains. Recently, it was shown that the downregulation of Csp24 expression mediated by an antisense oligonucleotide blocked the development of enhanced excitability in identified type B photoreceptors after one-trial conditioning without affecting short-term excitability. Here, we show using whole-cell patch recordings that one-trial in vitro conditioning applied to isolated photoreceptors produces a significant reduction in the amplitude of the A-type transient K+ current (I(A)) detected 1.5-16 h after conditioning. One-trial conditioning produced a depolarized shift in the steady-state activation curve of I(A) without altering the inactivation curve. The conditioning-dependent reduction in I(A) was blocked by preincubation of the photoreceptors with Csp antisense oligonucleotide. These results provide an important link between Csp24, a cytoskeletal protein, and regulation of voltage-gated ion channels associated with intrinsic enhanced excitability underlying pavlovian conditioning.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.5256-04.2005