Effects of Second Phases on Microstructure, Microhardness, and Corrosion Behavior of Mg-3Sn-(1Ca) Alloys
The effects of second phases on microstructure, microhardness, and corrosion behavior of aged Mg-3Sn (T3) and Mg-3Sn-1Ca (TX31) alloys are investigated systematically. The thermal stability of the CaMgSn phase is higher than that of the Mg Sn phase, and the microstructure remains essentially unchang...
Gespeichert in:
Veröffentlicht in: | Materials 2019-08, Vol.12 (16), p.2515 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of second phases on microstructure, microhardness, and corrosion behavior of aged Mg-3Sn (T3) and Mg-3Sn-1Ca (TX31) alloys are investigated systematically. The thermal stability of the CaMgSn phase is higher than that of the Mg
Sn phase, and the microstructure remains essentially unchanged in the TX31 alloy after solution treatment for 28 h at 733 K. The T3 alloy exhibits double age-hardening peaks; one is 54.9 ± 2.1 HV for 7 h, and the other is 57.4 ± 2.8 HV for 15 h. However, the microhardness quickly reaches a stable value with increasing aging times in the TX31 alloy due to the no change in CaMgSn phases. It was also found by electrochemical impedance spectra that the corrosion resistance of aged T3 alloy is superior to that of aged TX31 alloy, especially T3 alloy aged for 7 h. The corrosion film of aged T3 alloy is denser, which attributes to most of dissolved Sn in the α-Mg matrix and the formation of a small quantity of tiny Mg
Sn particles, and effectively prevents the occurrence of further corrosion of the Mg matrix. However, galvanic cells formed between α-Mg and CaMgSn phases accelerate the corrosion of aged TX31 alloy. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma12162515 |