Dietary intake influences gut microbiota development of healthy Australian children from the age of one to two years

Early life nutrition is a vital determinant of an individual’s life-long health and also directly influences the ecological and functional development of the gut microbiota. However, there are limited longitudinal studies examining the effect of diet on the gut microbiota development in early childh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-08, Vol.9 (1), p.12476-11, Article 12476
Hauptverfasser: Matsuyama, Misa, Morrison, Mark, Cao, Kim-Anh Lê, Pruilh, Solange, Davies, Peter S. W., Wall, Clare, Lovell, Amy, Hill, Rebecca J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early life nutrition is a vital determinant of an individual’s life-long health and also directly influences the ecological and functional development of the gut microbiota. However, there are limited longitudinal studies examining the effect of diet on the gut microbiota development in early childhood. Here, up to seven stool samples were collected from each of 48 healthy children during their second year of life, and microbiota dynamics were assessed using 16S rRNA gene amplicon sequencing. Children’s dietary information was also collected during the same period using a validated food frequency questionnaire designed for this age group, over five time points. We observed significant changes in gut microbiota community, concordant with changes in the children’s dietary pattern over the 12-month period. In particular, we found differential effects on specific Firmicutes-affiliated lineages in response to frequent intake of either processed or unprocessed foods. Additionally, the consumption of fortified milk supplemented with a Bifidobacterium probiotic and prebiotics (synbiotics) further increased the presence of Bifidobacterium spp., highlighting the potential use of synbiotics to prolong and sustain changes in these lineages and shaping the gut microbiota community in young children.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-48658-4