The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength

The genetic components of microbial species that inhabit the body are known collectively as the microbiome. Modifications to the microbiome have been implicated in disease processes throughout the body and have recently been shown to influence bone. Prior work has associated changes in the microbial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2019-10, Vol.127, p.146-154
Hauptverfasser: Guss, Jason D., Taylor, Erik, Rouse, Zach, Roubert, Sebastian, Higgins, Catherine H., Thomas, Corinne J., Baker, Shefford P., Vashishth, Deepak, Donnelly, Eve, Shea, M. Kyla, Booth, Sarah L., Bicalho, Rodrigo C., Hernandez, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The genetic components of microbial species that inhabit the body are known collectively as the microbiome. Modifications to the microbiome have been implicated in disease processes throughout the body and have recently been shown to influence bone. Prior work has associated changes in the microbial taxonomy (phyla, class, species, etc.) in the gut with bone phenotypes but has provided limited information regarding mechanisms. With the goal of achieving a more mechanistic understanding of the effects of the microbiome on bone, we perform a metagenomic analysis of the gut microbiome that provides information on the functional capacity of the microbes (all microbial genes present) rather than only characterizing the microbial taxa. Male C57Bl/6 mice were subjected to disruption of the gut microbiota (ΔMicrobiome) using oral antibiotics (from 4 to 16 weeks of age) or remained untreated (n = 6–7/group). Disruption of the gut microbiome in this manner has been shown to lead to reductions in tissue mechanical properties and whole bone strength in adulthood with only minor changes in bone geometry and density. ΔMicrobiome led to modifications in the abundance of microbial genes responsible for the synthesis of the bacterial cell wall and capsule; bacterially synthesized carbohydrates; and bacterially synthesized vitamins (B and K) (p 
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2019.06.010