An image-based deep learning framework for individualizing radiotherapy dose

Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict trea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet. Digital health 2019-07, Vol.1 (3), p.e136-e147
Hauptverfasser: Lou, Bin, Doken, Semihcan, Zhuang, Tingliang, Wingerter, Danielle, Gidwani, Mishka, Mistry, Nilesh, Ladic, Lance, Kamen, Ali, Abazeed, Mohamed E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e147
container_issue 3
container_start_page e136
container_title The Lancet. Digital health
container_volume 1
creator Lou, Bin
Doken, Semihcan
Zhuang, Tingliang
Wingerter, Danielle
Gidwani, Mishka
Mistry, Nilesh
Ladic, Lance
Kamen, Ali
Abazeed, Mohamed E
description Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be
doi_str_mv 10.1016/S2589-7500(19)30058-5
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31448366</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1116-3bde2c605b9d597ba7736d0f786fdefa14c3e4bdb5a1c6ab3dec66afa69477163</originalsourceid><addsrcrecordid>eNpVkEFLAzEUhIMgttT-BCVHPawmm83L7kUoxapQ8KCel5fNSxvd7i7ZtlJ_vRa16GlghvlghrEzKa6kkHD9lOq8SIwW4kIWl0oInSf6iA0P9oCN-_5VCJGmUhljTthAySzLFcCQzScNDytcUGKxJ8cdUcdrwtiEZsF9xBW9t_GN-zby0LiwDW6DdfjYpxFdaNdLitjtuGt7OmXHHuuexj86Yi-z2-fpfTJ_vHuYTuZJJ6WERFlHaQVC28Lpwlg0RoET3uTgHXmUWaUos85qlBWgVY4qAPQIRWaMBDViN9_cbmNX5Cpq1hHrsotfS-KubDGU_5MmLMtFuy3BiDw1e8D5X8Ch-fuL-gSFOmfS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An image-based deep learning framework for individualizing radiotherapy dose</title><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lou, Bin ; Doken, Semihcan ; Zhuang, Tingliang ; Wingerter, Danielle ; Gidwani, Mishka ; Mistry, Nilesh ; Ladic, Lance ; Kamen, Ali ; Abazeed, Mohamed E</creator><creatorcontrib>Lou, Bin ; Doken, Semihcan ; Zhuang, Tingliang ; Wingerter, Danielle ; Gidwani, Mishka ; Mistry, Nilesh ; Ladic, Lance ; Kamen, Ali ; Abazeed, Mohamed E</creatorcontrib><description>Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be &lt;5%. Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone ( = &lt;0.001 and &lt;0.001, respectively). Deep Profiler performed well in an external study population ( = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). Gray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases. Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.</description><identifier>EISSN: 2589-7500</identifier><identifier>DOI: 10.1016/S2589-7500(19)30058-5</identifier><identifier>PMID: 31448366</identifier><language>eng</language><publisher>England</publisher><subject>Aged ; Aged, 80 and over ; Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - radiotherapy ; Deep Learning ; Female ; Humans ; Male ; Radiation Dosage ; Radiosurgery</subject><ispartof>The Lancet. Digital health, 2019-07, Vol.1 (3), p.e136-e147</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31448366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lou, Bin</creatorcontrib><creatorcontrib>Doken, Semihcan</creatorcontrib><creatorcontrib>Zhuang, Tingliang</creatorcontrib><creatorcontrib>Wingerter, Danielle</creatorcontrib><creatorcontrib>Gidwani, Mishka</creatorcontrib><creatorcontrib>Mistry, Nilesh</creatorcontrib><creatorcontrib>Ladic, Lance</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><creatorcontrib>Abazeed, Mohamed E</creatorcontrib><title>An image-based deep learning framework for individualizing radiotherapy dose</title><title>The Lancet. Digital health</title><addtitle>Lancet Digit Health</addtitle><description>Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be &lt;5%. Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone ( = &lt;0.001 and &lt;0.001, respectively). Deep Profiler performed well in an external study population ( = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). Gray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases. Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - radiotherapy</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Radiation Dosage</subject><subject>Radiosurgery</subject><issn>2589-7500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEFLAzEUhIMgttT-BCVHPawmm83L7kUoxapQ8KCel5fNSxvd7i7ZtlJ_vRa16GlghvlghrEzKa6kkHD9lOq8SIwW4kIWl0oInSf6iA0P9oCN-_5VCJGmUhljTthAySzLFcCQzScNDytcUGKxJ8cdUcdrwtiEZsF9xBW9t_GN-zby0LiwDW6DdfjYpxFdaNdLitjtuGt7OmXHHuuexj86Yi-z2-fpfTJ_vHuYTuZJJ6WERFlHaQVC28Lpwlg0RoET3uTgHXmUWaUos85qlBWgVY4qAPQIRWaMBDViN9_cbmNX5Cpq1hHrsotfS-KubDGU_5MmLMtFuy3BiDw1e8D5X8Ch-fuL-gSFOmfS</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Lou, Bin</creator><creator>Doken, Semihcan</creator><creator>Zhuang, Tingliang</creator><creator>Wingerter, Danielle</creator><creator>Gidwani, Mishka</creator><creator>Mistry, Nilesh</creator><creator>Ladic, Lance</creator><creator>Kamen, Ali</creator><creator>Abazeed, Mohamed E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>201907</creationdate><title>An image-based deep learning framework for individualizing radiotherapy dose</title><author>Lou, Bin ; Doken, Semihcan ; Zhuang, Tingliang ; Wingerter, Danielle ; Gidwani, Mishka ; Mistry, Nilesh ; Ladic, Lance ; Kamen, Ali ; Abazeed, Mohamed E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1116-3bde2c605b9d597ba7736d0f786fdefa14c3e4bdb5a1c6ab3dec66afa69477163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - radiotherapy</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Radiation Dosage</topic><topic>Radiosurgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Bin</creatorcontrib><creatorcontrib>Doken, Semihcan</creatorcontrib><creatorcontrib>Zhuang, Tingliang</creatorcontrib><creatorcontrib>Wingerter, Danielle</creatorcontrib><creatorcontrib>Gidwani, Mishka</creatorcontrib><creatorcontrib>Mistry, Nilesh</creatorcontrib><creatorcontrib>Ladic, Lance</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><creatorcontrib>Abazeed, Mohamed E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet. Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Bin</au><au>Doken, Semihcan</au><au>Zhuang, Tingliang</au><au>Wingerter, Danielle</au><au>Gidwani, Mishka</au><au>Mistry, Nilesh</au><au>Ladic, Lance</au><au>Kamen, Ali</au><au>Abazeed, Mohamed E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An image-based deep learning framework for individualizing radiotherapy dose</atitle><jtitle>The Lancet. Digital health</jtitle><addtitle>Lancet Digit Health</addtitle><date>2019-07</date><risdate>2019</risdate><volume>1</volume><issue>3</issue><spage>e136</spage><epage>e147</epage><pages>e136-e147</pages><eissn>2589-7500</eissn><abstract>Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be &lt;5%. Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone ( = &lt;0.001 and &lt;0.001, respectively). Deep Profiler performed well in an external study population ( = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). Gray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases. Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.</abstract><cop>England</cop><pmid>31448366</pmid><doi>10.1016/S2589-7500(19)30058-5</doi></addata></record>
fulltext fulltext
identifier EISSN: 2589-7500
ispartof The Lancet. Digital health, 2019-07, Vol.1 (3), p.e136-e147
issn 2589-7500
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708276
source MEDLINE; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aged
Aged, 80 and over
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - radiotherapy
Deep Learning
Female
Humans
Male
Radiation Dosage
Radiosurgery
title An image-based deep learning framework for individualizing radiotherapy dose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20image-based%20deep%20learning%20framework%20for%20individualizing%20radiotherapy%20dose&rft.jtitle=The%20Lancet.%20Digital%20health&rft.au=Lou,%20Bin&rft.date=2019-07&rft.volume=1&rft.issue=3&rft.spage=e136&rft.epage=e147&rft.pages=e136-e147&rft.eissn=2589-7500&rft_id=info:doi/10.1016/S2589-7500(19)30058-5&rft_dat=%3Cpubmed%3E31448366%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31448366&rfr_iscdi=true