An image-based deep learning framework for individualizing radiotherapy dose

Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict trea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet. Digital health 2019-07, Vol.1 (3), p.e136-e147
Hauptverfasser: Lou, Bin, Doken, Semihcan, Zhuang, Tingliang, Wingerter, Danielle, Gidwani, Mishka, Mistry, Nilesh, Ladic, Lance, Kamen, Ali, Abazeed, Mohamed E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be
ISSN:2589-7500
DOI:10.1016/S2589-7500(19)30058-5