Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics
High-resolution seismic reflection, magnetic and gravity data, acquired offshore of Etna volcano, provide a new insight to understanding the relationship between tectonics and spatial-temporal evolution of volcanism. The Timpe Plateau, a structural high pertaining to the Hyblean foreland domain, loc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-08, Vol.9 (1), p.12125-15, Article 12125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-resolution seismic reflection, magnetic and gravity data, acquired offshore of Etna volcano, provide a new insight to understanding the relationship between tectonics and spatial-temporal evolution of volcanism. The Timpe Plateau, a structural high pertaining to the Hyblean foreland domain, located offshore of southeastern Mt. Etna, is speckled by volcanics and strongly affected by strike-slip tectonics. Transpressive deformation produced a push-up and a remarkable shortening along WNW-ESE to NW-SE trending lineaments. Fault segments, bounding basinal areas, show evidence of positive tectonic inversion, suggesting a former transtensive phase. Transtensive tectonics favoured the emplacement of deep magmatic intrusive bodies and Plio-Quaternary scattered volcanics through releasing zones. The continuing of wrench tectonics along different shear zones led to the migration of transtensive regions in the Etna area and the positive inversion of the former ones, where new magma ascent was hampered. This process caused the shifting of volcanism firstly along the main WNW-ESE trending “Southern Etna Shear Zone”, then towards the Valle del Bove and finally up to the present-day stratovolcano. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-48550-1 |