BOK promotes erythropoiesis in a mouse model of myelodysplastic syndrome
Myelodysplastic syndromes are clonal hematopoietic stem cell disorders characterized by cytopenia and intramedullary apoptosis. BCL-2 Ovarian Killer (BOK) is a pro-apoptotic member of the BCL-2 family of proteins which, when stabilized from endoplasmic reticulum-associated degradation (ERAD), induce...
Gespeichert in:
Veröffentlicht in: | Annals of hematology 2019-09, Vol.98 (9), p.2089-2096 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myelodysplastic syndromes are clonal hematopoietic stem cell disorders characterized by cytopenia and intramedullary apoptosis. BCL-2 Ovarian Killer (BOK) is a pro-apoptotic member of the BCL-2 family of proteins which, when stabilized from endoplasmic reticulum-associated degradation (ERAD), induces apoptosis in response to ER stress. Although ER stress appropriately activates the unfolded protein response (UPR) in BOK-disrupted cells, the downstream effector signaling that includes ATF4 is defective. We used Nup98-HoxD13 (NHD13) transgenic mice to evaluate the consequences of BOK loss on hematopoiesis and leukemogenesis. Acute myeloid leukemia developed in 36.7% of NHD13 mice with a
Bok
gene knockout between the age of 8 and 13 months and presented a similar overall survival to the NHD13 mice. The loss of BOK exacerbated anemia in NHD13 mice, and NHD13/BOK-deficient mice exhibited significantly lower hemoglobin, lower mean cell hemoglobin concentration, and higher mean cell volume than NHD13 mice. Hematopoietic progenitor cell assays revealed a decreased amount of erythroid progenitor stem cells (BFU-E) in the bone marrow of NHD13-transgenic/BOK-deficient mice. RT-qPCR analysis demonstrated decreased mean value of ATF4 in the erythroid progenitors of NHD13 and NHD13/BOK-deficient mice. Our results suggest that in addition to induction of apoptosis in response to ER stress, BOK may regulate erythropoiesis when certain erythroid progenitors experience cell stress. |
---|---|
ISSN: | 0939-5555 1432-0584 |
DOI: | 10.1007/s00277-019-03726-7 |