Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-08, Vol.9 (1), p.11824-12, Article 11824
Hauptverfasser: Bhandari, Janarjan, China, Swarup, Chandrakar, Kamal Kant, Kinney, Greg, Cantrell, Will, Shaw, Raymond A., Mazzoleni, Lynn R., Girotto, Giulia, Sharma, Noopur, Gorkowski, Kyle, Gilardoni, Stefania, Decesari, Stefano, Facchini, Maria Cristina, Zanca, Nicola, Pavese, Giulia, Esposito, Francesco, Dubey, Manvendra K., Aiken, Allison C., Chakrabarty, Rajan K., Moosmüller, Hans, Onasch, Timothy B., Zaveri, Rahul A., Scarnato, Barbara V., Fialho, Paulo, Mazzoleni, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-48143-y