Unraveling structural and compositional information in 3D FinFET electronic devices

Non-planar Fin Field Effect Transistors (FinFET) are already present in modern devices. The evolution from the well-established 2D planar technology to the design of 3D nanostructures rose new fabrication processes, but a technique capable of full characterization, particularly their dopant distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-08, Vol.9 (1), p.11629-7, Article 11629
Hauptverfasser: Trombini, Henrique, Marmitt, Gabriel Guterres, Alencar, Igor, Baptista, Daniel Lorscheitter, Reboh, Shay, Mazen, Frédéric, Pinheiro, Rafael Bortolin, Sanchez, Dario Ferreira, Senna, Carlos Alberto, Archanjo, Bráulio Soares, Achete, Carlos Alberto, Grande, Pedro Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-planar Fin Field Effect Transistors (FinFET) are already present in modern devices. The evolution from the well-established 2D planar technology to the design of 3D nanostructures rose new fabrication processes, but a technique capable of full characterization, particularly their dopant distribution, in a representative (high statistics) way is still lacking. Here we propose a methodology based on Medium Energy Ion Scattering (MEIS) to address this query, allowing structural and compositional quantification of advanced 3D FinFET devices with nanometer spatial resolution. When ions are backscattered, their energy losses unfold the chemistry of the different 3D compounds present in the structure. The FinFET periodicity generates oscillatory features as a function of backscattered ion energy and, in fact, these features allow a complete description of the device dimensions. Additionally, each measurement is performed over more than thousand structures, being highly representative in a statistical meaning. Finally, independent measurements using electron microscopy corroborate the proposed methodology.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-48117-0