Credit assignment to state-independent task representations and its relationship with model-based decision making

Model-free learning enables an agent to make better decisions based on prior experience while representing only minimal knowledge about an environment’s structure. It is generally assumed that model-free state representations are based on outcome-relevant features of the environment. Here, we challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (32), p.15871-15876
Hauptverfasser: Shahar, Nitzan, Moran, Rani, Hauser, Tobias U., Kievit, Rogier A., McNamee, Daniel, Moutoussis, Michael, Dolan, Raymond J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model-free learning enables an agent to make better decisions based on prior experience while representing only minimal knowledge about an environment’s structure. It is generally assumed that model-free state representations are based on outcome-relevant features of the environment. Here, we challenge this assumption by providing evidence that a putative model-free system assigns credit to task representations that are irrelevant to an outcome. We examined data from 769 individuals performing a well-described 2-step reward decision task where stimulus identity but not spatial-motor aspects of the task predicted reward. We show that participants assigned value to spatial-motor representations despite it being outcome irrelevant. Strikingly, spatial-motor value associations affected behavior across all outcome-relevant features and stages of the task, consistent with credit assignment to low-level state-independent task representations. Individual difference analyses suggested that the impact of spatial-motor value formation was attenuated for individuals who showed greater deployment of goal-directed (model-based) strategies. Our findings highlight a need for a reconsideration of how model-free representations are formed and regulated according to the structure of the environment.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1821647116