Synthesis of Double-Shelled Hollow Inorganic Nanospheres through Block Copolymer-Metal Coordination and Atomic Layer Deposition
Double-shelled hollow (DSH) structures with varied inorganic compositions are confirmed to have improved performances in diverse applications, especially in lithium ion battery. However, it is still of great challenge to obtain these complex nanostructures with traditional hard templates and solutio...
Gespeichert in:
Veröffentlicht in: | Polymers 2019-07, Vol.11 (7), p.1208 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Double-shelled hollow (DSH) structures with varied inorganic compositions are confirmed to have improved performances in diverse applications, especially in lithium ion battery. However, it is still of great challenge to obtain these complex nanostructures with traditional hard templates and solution-based route. Here we report an innovative pathway for the preparation of the DSH nanospheres based on block copolymer self-assembly, metal-ligand coordination and atomic layer deposition. Polymeric composite micelles derived from amphiphilic block copolymers and ferric ions were prepared with heating-enabled micellization and metal-ligand coordination. The DSH nanospheres with Fe
O
stands inner and TiO
outer the structures can be obtained with atomic layer deposition of a thin layer of TiO
followed with calcination in air. The coordination was carried out at room temperature and the deposition was performed at the low temperature of 80 °C, thus providing a feasible fabrication strategy for DSH structures without destruction of the templates. The cavity and the outer layer of the structures can also be simply tuned with the utilized block copolymers and the deposition cycles. These DSH inorganic nanospheres are expected to find vital applications in battery, catalysis, sensing and drug delivery, etc. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym11071208 |