Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor

The quality of polyacrylonitrile (PAN) precursor has a great influence on the properties of the resultant carbon fibers. In this paper, a novel comonomer containing the sulfonic group, 2-acrtlamido-2-methylpropane acid (AMPS), was introduced to prepare P(AN-co-AMPS) copolymers using itaconic acid (I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2019-07, Vol.11 (7), p.1150
Hauptverfasser: Liu, Huichao, Zhang, Shuo, Yang, Jinglong, Ji, Muwei, Yu, Jiali, Wang, Mingliang, Chai, Xiaoyan, Yang, Bo, Zhu, Caizhen, Xu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quality of polyacrylonitrile (PAN) precursor has a great influence on the properties of the resultant carbon fibers. In this paper, a novel comonomer containing the sulfonic group, 2-acrtlamido-2-methylpropane acid (AMPS), was introduced to prepare P(AN-co-AMPS) copolymers using itaconic acid (IA) as the control. The nanofibers of PAN, P(AN-co-IA), and P(AN-co-AMPS) were prepared using the electrospinning method. The effect of AMPS comonomer on the carbon nanofibers was studied using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Raman spectrum. The structural evolutions of PAN-based nanofibers were quantitatively tracked by FTIR and XRD during the thermal oxidative stabilization (TOS) process. The results suggested that P(AN-co-AMPS) nanofibers had the lower heat release rate (Δ Δ = 26.9 J g °C ), the less activation energy of cyclization ( = 26.6 kcal/mol and = 27.5 kcal/mol), and the higher extent of stabilization ( and ) during TOS process, which demonstrated that the AMPS comonomer improved the efficiency of the TOS process. The P(AN-co-AMPS) nanofibers had the better thermal stable structures. Moreover, the carbon nanofibers derived from P(AN-co-AMPS) precursor nanofibers had the better graphite-like structures ( = 46.889). Therefore, the AMPS is a promising candidate comonomer to produce high performance carbon fibers.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11071150