Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2016-07, Vol.121 (7), p.7153-7165
Hauptverfasser: Dawkins, E. C. M., Plane, J. M. C., Chipperfield, M., Feng, W., Marsh, D. R., Hoffner, J., Janches, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.
ISSN:2169-9380
2169-9402
DOI:10.1002/2016JA022522