Increased Expression of Golli Myelin Basic Proteins Enhances Calcium Influx into Oligodendroglial Cells
The myelin basic protein (MBP) gene encodes two families of proteins: the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. Previous work suggests that golli proteins may play a role in Ca2+ homeostasis in oligodendrocytes (OLs) and in T-cells. Ove...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2007-11, Vol.27 (46), p.12690-12699 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The myelin basic protein (MBP) gene encodes two families of proteins: the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. Previous work suggests that golli proteins may play a role in Ca2+ homeostasis in oligodendrocytes (OLs) and in T-cells. Overexpression of golli in OL cell lines induces elaboration of sheets and processes. Live imaging of these cells revealed a rapid retraction of the processes and sheets after depolarization with high K+. This phenomenon was associated with a significant increase in [Ca2+]int without changes in cell viability. The results indicated that golli produced its effect through Ca2+ influx, rather than Ca2+ release from intracellular stores. Furthermore, a specific [Ca2+]int chelator (BAPTA) or Cd2+, a specific blocker of voltage-operated Ca2+ channels, abolished the ability of golli to promote process extension in a dose-dependent manner. Analysis of the golli protein identified a myristoylation site at the C terminus of the golli domain, which was essential for the action of golli on Ca2+ influx, suggesting that binding of golli to the plasma membrane is important for modulating Ca2+ homeostasis. High-resolution spatiotemporal analysis along N19 processes revealed higher-amplitude local Ca2+ influx in regions with elevated levels of golli. These findings suggest a key role for golli proteins in regulating voltage-gated Ca2+ channels in OLs during process remodeling. Our observations are consistent with the hypothesis that golli proteins, as a part of a protein complex, modulate Ca2+ influx at the plasma membrane and along OL processes. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.2381-07.2007 |