Experimental demonstration of single-shot quantum and classical signal transmission on single wavelength optical pulse

Advances in highly sensitive detection techniques for classical coherent communication systems have reduced the received signal power requirements to a few photons per bit. At this level one can take advantage of the quantum noise to create secure communication, using continuous variable quantum key...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-08, Vol.9 (1), p.11190-6, Article 11190
Hauptverfasser: Kumar, Rupesh, Wonfor, Adrian, Penty, Richard, Spiller, Tim, White, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in highly sensitive detection techniques for classical coherent communication systems have reduced the received signal power requirements to a few photons per bit. At this level one can take advantage of the quantum noise to create secure communication, using continuous variable quantum key distribution (CV-QKD). In this work therefore we embed CV-QKD signals within classical signals and transmit classical data and secure keys simultaneously over 25 km of optical fibre. This is achieved by using a novel coherent displacement state generator, which has the potential for being used in a wide range of quantum optical experiments. This approach removes the need for separate channels for quantum communication systems and allows reduced system bandwidth for a given communications specification. This demonstration therefore demonstrates a way of implementing direct quantum physical layer security within a conventional classical communications system, offering a major advance in term of practical and low cost implementation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-47699-z