Effect Estimates in Randomized Trials and Observational Studies: Comparing Apples With Apples
Abstract Effect estimates from randomized trials and observational studies might not be directly comparable because of differences in study design, other than randomization, and in data analysis. We propose a 3-step procedure to facilitate meaningful comparisons of effect estimates from randomized t...
Gespeichert in:
Veröffentlicht in: | American journal of epidemiology 2019-08, Vol.188 (8), p.1569-1577 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Effect estimates from randomized trials and observational studies might not be directly comparable because of differences in study design, other than randomization, and in data analysis. We propose a 3-step procedure to facilitate meaningful comparisons of effect estimates from randomized trials and observational studies: 1) harmonization of the study protocols (eligibility criteria, treatment strategies, outcome, start and end of follow-up, causal contrast) so that the studies target the same causal effect, 2) harmonization of the data analysis to estimate the causal effect, and 3) sensitivity analyses to investigate the impact of discrepancies that could not be accounted for in the harmonization process. To illustrate our approach, we compared estimates of the effect of immediate with deferred initiation of antiretroviral therapy in individuals positive for the human immunodeficiency virus from the Strategic Timing of Antiretroviral Therapy (START) randomized trial and the observational HIV-CAUSAL Collaboration. |
---|---|
ISSN: | 0002-9262 1476-6256 |
DOI: | 10.1093/aje/kwz100 |